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Consistency proof of two denoising methods and the
parameter selection of PDE filtering method for ESPI
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Electronic speckle pattern interferometry (ESPI) is a nondestructive, whole-field optical measurement
technique. The removal of speckle noise is fundamental to extract measurement information accurately.
In this letter, two filtering methods based on the oriented feature of ESPI fringes, i.e., the second-order
oriented partial differential equation (SOOPDE) and oriented, regularized quadratic-cost function filtering
methods, are first proven to be consistent. An important question in solving partial differential equation,
i.e., how to select suitable parameters in an adaptive manner, is then discussed. The computer-simulated
and experimentally obtained ESPI fringe patterns and phase map are processed by the SOOPDE filtering
model with adaptive selective parameters. The qualitative and quantitative analyses demonstrate that the
parameters selected by the adaptive method are effective and suitable for the SOOPDE filtering model.
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Electronic speckle pattern interferometry (ESPI) is a
nondestructive measurement technique that has been ap-
plied in numerous areas to measure vibrations, displace-
ments, and their derivatives, as well as to reconstruct
three-climensional (3D) objects[1]. With ESPI, useful in-
formation is acquired by analyzing ESPI fringe patterns.
However, the original ESPI fringe patterns have strong
noises. Therefore, effectively denoising fringe patterns is
a key problem in applying the ESPI technique.

Orientation is one of the important characteristics
of ESPI fringe patterns. In past few decades, several
filtering methods based on fringe orientation have been
proposed to denoise fringe patterns. Yang et al.[2] pre-
sented the spin filtering method, which used a curve
window to approximate the fringe contour and fitted the
gray levels. Villa et al.[3] proposed the oriented, regular-
ized quadratic-cost function (ORQCF) method, which
used regularization theory in a Bayesian framework to
derive a quadratic cost function that includes informa-
tion about the fringe orientation. Tang et al.[4] proposed
the second-order oriented partial differential equation
(SOOPDE) model to control diffusion orientation. The
ORQCF method and the SOOPDE model can provide
good filter results to ESPI fringe patterns.

The denoising performance of partial differential equa-
tion (PDE) filter methods is related to the parameters
used when solving PDE models. These parameters in-
clude discrete time step size and iteration number, which
are typically chosen by trials. Although Szolgay et al.[5]
presented the angle deviation error to estimate the ideal
stopping condition, only a typical iteration stopping
time was provided for the iterative image deconvolution
method. This letter discusses how to select the dis-
crete time step size and the iteration number, as well as
introduces the correlation coefficient to measure the cor-
relation between signal and noise, which is more direct

and easily understood than the angle deviation error. To
harmonize contradiction for denoising and fidelity, the
speckle index is also considered as an important standard
for selecting filter parameters.

This letter emphasizes the oriented filtering method
for ESPI fringe patterns. Firstly, two filtering methods
based on the oriented feature of fringes mentioned earlier,
i.e., SOOPDE and ORQCF, are proven to be consistent.
Secondly, an important question in solving PDE, i.e.,
how to select suitable parameters such as the discrete
time step size and the iteration number, is discussed to
obtain an adaptive solution.

ESPI fringe patterns have an obvious oriented feature.
Figure 1(a) illustrates a noise-free fringe pattern, and its
local region is shown in Fig. 1(b). In Fig. 1(b), the
adjacent fringe is approximately parallel, and the fringe
orientation varies gradually in the small window. Fringe
patterns have a stable orientation when the selected local
region is sufficiently small. Figure 1(c) shows the Fourier
spectrum of Fig. 1(b). Uniformly distributed fringe pat-
terns transform into two blobs, which are symmetrical
around the origin point. The line of the two blobs is

Fig. 1. Pictures of noise-free fringe patterns and the spectrum
diagram of its local region. (a) Noise-free fringe patterns, (b)
local region of the fringe patterns, and (c) Fourier spectrum
of (b).
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perpendicular to the fringe orientation. Therefore, the
fringe orientation can be calculated based on the posi-
tion of the blobs.

The ESPI fringe patterns obtained through the exper-
iment are not purely periodic. When formed under an
ideal situation, the energy of the blobs will dissipate in
the regions with low fringe contrast or massive speckle
noise. However, the main frequency energy accounts for
most of the energy. The orientation can be calculated by
the algorithm presented in Ref. [6] as

θ0 =
1
2

tan−1






∫

Θ

|F (r, Θ)|2 sin(2Θ)dΘ

∫

Θ

|F (r, Θ)|2 cos(2Θ)dΘ






, (1)

where F (r, Θ) is the Fourier spectrum in a polar form,
r is the radial distance from the origin, Θ is the coun-
terclockwise angle from the x axis, and θ0 denotes the
angle between the fringe orientation and the x axis. A
3×3 Gaussian low-pass filter is used to smooth θ

[7]
0 .

Filtering methods based on PDEs have received con-
siderable research attention in the past few years, which
transforms image processing to PDE solving. By intro-
ducing fringe oriented information, the diffusion in the
SOOPDE is permitted only along the fringe orientation.
Therefore, the boundary of the fringe is protected dur-
ing filtering. Considering the fringe orientation ρ, the
SOOPDE model can be expressed as

∂tu =
∂2u

∂ρ2
= uxx cos2 θ+uyy sin2 θ+2uxy sin θ cos θ, (2)

where uxx, uxy, and uyy are the second-order partial
derivatives of u(x, y, t) with respect to coordinates x
and y. The filtered fringe can be obtained through the
numerical solution of Eq. (2).

Villa et al.[3] proposed a quadratic cost function to
denoise fringe patterns. Considering the fringe orienta-
tion, the oriented, regularized quadratic-cost function is
defined as

U(ui,j) =
∑

(i,j)∈L

{
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where the original image Ii,j is the initial condition, µ is
a positive constant, and
(

∂u

∂ρ

)

i,j

= (ui,j − ui−1,j) cos θi,j + (ui,j − ui,j−1) sin θi,j ,

(
∂u

∂ρ

)

i+1,j

= (ui+1,j − ui,j) cos θi+1,j

+ (ui+1,j − ui+1,j−1) sin θi+1,j ,
(

∂u

∂ρ

)

i,j+1

= (ui,j+1 − ui−1,j+1) cos θi,j+1

+ (ui,j+1 − ui,j) sin θi,j+1, (4)

In this method, minimizing the cost function is equiva-
lent to smoothing the image only along the fringe orien-
tation, which is implemented by using iterative methods
based on the following equation

un+1 − un = −λ
∂U

∂u
, (5)

where n denotes the iteration number, and λ is an arbi-
trary positive constant.

Using Eq. (4), the partial derivative of U with respect
to u can be expressed as
(

∂U

∂u

)

i,j

=2(ui,j − Ii,j) + 2µ(ui,j − ui−1,j) cos θi,j

+ (ui,j − ui,j−1) sin θi,j ](cos θi,j + sin θi,j)

− 2µ[(ui+1,j − ui,j) cos θi+1,j + (ui+1,j

− ui+1,j−1) sin θi+1,j ] cos θi+1,j

− 2µ[(ui,j+1 − ui−1,j+1) cos θi,j+1

+ (ui,j+1 − ui,j) sin θi,j+1] sin θi,j+1. (6)

Equation (6) can be rewritten and arranged as
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where x̂ and ŷ are the unit vectors with respect to the x
and y axis, respectively; and ρ̂ = cos θx̂ + sin θŷ denotes
the unit vector along the fringe orientation.

The iterative process based on Eq. (6) can be rewritten
as

un+1 − un

λ
= −

(
∂U

∂u

)
= 2µ ·

∂2u

∂ρ2
− 2[u − I ]. (8)
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Setting ∆t = λ, we have

un+1 − un

λ
=

un+1 − un

∆t
= ∂tu. (9)

Substituting Eq. (9) into Eq. (8) yields

∂tu = 2(I − u) + 2µ ·
∂2u

∂ρ2
. (10)

The first term of Eq. (10) is a fidelity term, the func-
tion of which is to assure that the expected solution is
insignificantly different from the original image. If the
fidelity term is ignored and µ = 0.5, then Eq. (10) will
be the same as Eq. (2). That is, the SOOPDE model
and the ORQCF method are equivalent. The operational
principle of the ORQCF method can be explained further
by associating it with the PDE model. The essence of the
SOOPDE model is to allow the filtered result to reach
the minimal point of the cost function. The operational
principle of the two methods demonstrates that the ori-
entation feature of the fringes is important and effective.

The numerical solutions of the PDE provide the filtered
images. To compute Eq. (2) numerically, the discrete
scheme is given as[8]

un+1
i,j =un

i,j + ∆t · [(uxx)n
i,j cos2 θi,j + (uyy))n

i,j sin2 θi,j

+ 2(uxy)n
i,j sin θi,j cos θi,j ], (11)

where un+1
i,j is the numerical solution, the subscripts i, j

denote the pixel position in a discrete two-dimensional
(2D) grid, the superscript n denotes the iteration num-
ber, the discrete time tn = n∆t, and ∆t is the time step.

Equation (11) has two key parameters to solve PDE,
i.e., the discrete time step size ∆t and the iteration num-
ber n. Parameters are generally chosen based on trials
and errors. Given that the features of the processed im-
age vary, obtaining appropriate parameters for the PDE
model may be difficult. Mrázek[9] proposed an adaptive
selection method for parameters, which was concerned
only with the smoothness of the filtered image and did
not consider fidelity in filtering. In this letter, we dis-
cuss the influences of the discrete time step size and the
iteration number on the performance of solving PDE. Ac-
cordingly, a suitable parameter selection method can be
obtained. The new method improves[9] by introducing
the speckle index to balance denoising and fidelity dur-
ing filtering.

The diffusion of PDE is shown in Fig. 2. The diffusion
filtering starts on the noisy image as its initial condition
u(0) = f , and the diffusion evolves along a trajectory
u(t)[9], which depends on the diffusion parameters and
the input image.

Fig. 2. Schematic of diffusion.

The assumption is that noise will be removed from the
data before the important features of the signal com-
mence to deteriorate significantly. In practice, when the
filtered image u(n∆t) at t = n∆t is near the ideal sig-
nal f̃ , the correlation of the filtered function u(n∆t) and
the difference (u(0) − u(n∆t)) should be smaller. The
correlation coefficient of u(n∆t) and (u(0) − u(n∆t)) is
defined as[9]

corr(u(0) − u(n∆t), u(n∆t))

=
cov(u(0) − u(n∆t), u(n∆t))√

var(u(0) − u(n∆t)) · var(u(n∆t))
, (12)

where cov(·) and var(·) denote the operation of solving
covariance and variance, respectively.

The objective of filtering is to remove noise from fringe
patterns. Therefore, the speckle index[10], regarded as a
measurement standard for local smoothness of the fringe
patterns, should be considered as an important standard
for selecting filter parameters. The speckle index is eval-
uated as the average of the ratios of the local standard
deviation to its mean, which is expressed as

S =
1

M × N

M∑

i=1

N∑

j=1

σi,j

〈ui,j〉
, (13)

where 〈ui,j〉 is the average gray value in the neighborhood
for the window with l× l pixels of the current point, and
the local standard deviation σi,j is defined as

σi,j =

√√√√ 1
l2 − 1

1∑

k=−1

1∑

l=−1

(ui−k,j−l − 〈ui,j〉)2. (14)

The speckle index can be regarded as an average re-
ciprocal of the signal-to-noise ratio, wherein the signal is
the mean value, and the noise is the standard deviation.
Therefore, a low speckle index indicates that the local
smoothness of the fringe pattern is satisfactory.

Based on the aforementioned theories, the parameters
for solving PDE can be selected simply and adaptively.

(1) Selecting the discrete time step size ∆t
The degree of smoothness associated with the filtered

image is determined by the product of ∆t and n. When
the product of ∆t and n remains constant, similar filtered
results will be obtained with different parameters. To
reduce operation time, the iteration number should be
minimal. Under the condition that the solution of PDE
is in a stable region, the time step size ∆t should there-
fore be large. To ensure the convergent solution of PDE,
∆t should satisfy the following condition:

corr(u(0)−u(2∆t), u(2∆t)) < corr(u(0)−u(∆t), u(∆t)).
(15)

Equation (15) indicates that the correlation of signal and
noise is decreasing if ∆t is suitable.

Hence, ∆t can be selected through the following steps.
The initial value is set as ∆t0 = 1, and the first

two filtered results u(∆t0) and u(2∆t0) are computed
based on the SOOPDE model. If corr(u(0) − u(2∆t0),
u(2∆t0)) > corr(u(0)− u(∆t0), u(∆t0)), i.e., Eq. (15) is
not satisfied, then the current value of ∆t is large. Set-
ting ∆tk+1 = ∆tk − 0.05, the first step is repeated until
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Eq. (15) is satisfied. The final value of ∆t is the selected
discrete time step size.

(2) Selecting the iteration number n
The main objective for selecting n is to make the cor-

relation coefficient of u(n∆t) and (u(0)−u(n∆t)) as low
as possible based on the premise that the speckle index
of u(n∆t) is less than threshold S0. Firstly, to iden-
tify a suitable value for the threshold S0, 10 computer-
simulated, noise-free ESPI fringe patterns with different
fringe densities and intensity distributions are tested to
compute the speckle index, the mean value of which is
used to ensure the local smoothness degree of the fringe
patterns. S0 is set to 0.2. Secondly, using the afore-
mentioned selected value of ∆t, the diffusion process is
repeated and the values of the two variables, i.e., the
speckle index of the filtered function u(n∆t) with each n
and the correlation coefficient between u(n∆t) and the
difference of (u(0) − u(n∆t)), are calculated. Thirdly,
n is chosen, in which the following two conditions are
satisfied simultaneously:

corr(u(0) − u((n + 1)∆t), u((n + 1)∆t)) > corr(u(0)

− u(n∆t), u(n∆t)), (16)

S < 0.2. (17)

When Eqs. (16) and (17) are satisfied, n can be deter-
mined. The filtered image based on the adaptive param-
eters will be obtained simultaneously.

Through experiments, we test the performance of the
parameter selection method for the SOOPDE through
four aspects. Firstly, computer-simulated ESPI fringe
patterns (Fig. 3(a)), which are generated based on the
method in Ref. [11], are employed to evaluate the perfor-
mance of the adaptive parameter selection method for the
SOOPDE model. Figure 3 shows the filtered results for
the initial ESPI fringe patterns by using the SOOPDE. In
addition to the filtered results obtained with the adaptive
selective parameters, two filtered images for Fig. 3(a)
are provided to demonstrate the validity of the adaptive
parameter selection method for the SOOPDE. Two pa-
rameters are calculated for each filtered image in Fig. 3.
The first is the speckle index S, and the second is the
fidelity, which can be defined as

F = 1 −
∑

(f̃ − u)2
∑

f̃2
, (18)

where f̃ andu denote the normalized, noise-free fringe
image and the filtered fringe image, respectively. A high
fidelity value indicates that the processed image is near
the noise-free image, i.e., it has a good fidelity.

To evaluate the filtering effect with different iteration
numbers, we calculate F and S for each filtered result
in Fig. 3, which are given in Table 1. The SOOPDE
with the adaptive selective parameters can provide high
fidelity and low speckle index. When the speckle index
is less than 0.2, the selected iteration number is suitable.
The filtering effect with different discrete time step sizes
is also evaluated. As mentioned previously, the smooth-
ness degree of the filtered image is determined by the
product of ∆t and n. By using Fig. 3(c) as an exam-
ple, the selected discrete time step size ∆t and iteration
number n are 0.4 and 48, respectively. Several filtered

images for Fig. 3(a), in which the product of ∆t and n
is approximately equal to 19.2, are therefore obtained.
The two evaluation parameters are calculated for these
images, which are given in Table 2. The results indicate
that when the selected discrete time step size is larger
than the adaptive value, the fidelity is small but the
speckle index is large, i.e., performance becomes worse.
When the discrete time step size is smaller than the
adaptive value, the filtered result is close to the adaptive
filtered result. To reduce computation time, the itera-
tion number should be small, i.e., the value of ∆t should
be large based on the condition that the filtered result
is sufficient. Therefore, the adaptive discrete time step
size selected by our adaptive method is suitable.

Secondly, we study the influences of the speckle and
neighbor sizes in Eq. (13) on the performance of the

Fig. 3. Computer-simulated fringe pattern and its filtered
image: (a) initial image, (b) filtered image by using the
SOOPDE with ∆t = 0.4 and n = 38, (c) filtered image by
using the SOOPDE with ∆t = 0.4 and n = 48, (d) filtered
image by using the SOOPDE with ∆t = 0.4 and n = 58.

Table 1. Performance Evaluation Results for
Different Iteration Numbers Based on the Fringe

Patterns Shown in Fig. 3

∆t n F S

Fig. 3(b) 0.4 38 0.9074 0.2232

Fig. 3(c) 0.4 48 0.8890 0.1984

Fig. 3(d) 0.4 58 0.8717 0.1768

Table 2. Performance Evaluation Results for
Different Discrete Time Step Sizes for Fig. 3(a)

∆t n F S

0.2 96 0.8894 0.1988

0.3 64 0.8892 0.1987

0.4 48 0.8890 0.1984

0.5 38 0.8878 0.2042

0.6 32 0.6323 0.2071

0.8 24 0.6259 0.2272
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Table 3. Fidelity Comparison Result for Different Speckle Size Noise ESPI Images with the Adaptive
Selective Parameters Based on Different Neighbor Sizes in Calculating S

Speckle Size

Window Size in Calculating S

3×3 5×5 7×7

Parameters F Parameters F Parameters F

One ∆t= 0.35, n= 38 0.8854 ∆t= 0.35, n= 66 0.8740 ∆t= 0.35, n= 75 0.8301

Two ∆t= 0.4, n= 28 0.8734 ∆t= 0.4, n= 46 0.8401 ∆t= 0.4, n= 59 0.8250

Three ∆t= 0.5, n= 16 0.8658 ∆t= 0.5, n= 39 0.8386 ∆t= 0.5, n= 52 0.8171

method. Three ESPI images with speckle sizes of one,
two, and three pixels are generated by the methods in
Refs. [11] and [12]. To select the iteration number n,
the neighbor size in Eq. (14) for evaluating 〈ui,j〉 is set
to 3 × 3, 5 × 5, and 7 × 7. Table 3 shows the fidelity
comparison result for different speckle sizes of the ESPI
images with the adaptive selective parameters based on
different neighbor sizes in Eq. (13). The partially filtered
images are shown in Fig. 4. The distinct results emerge
from the analysis of the numerical tests. As the speckle
size increases, a larger ∆t is needed to smooth faster
and the fidelity becomes lower. The reason for this phe-
nomenon is as follows. Noises exist in the fringe patterns,
and thus, the gray levels of some pixels change. Small
speckle noises can be removed easily by filters, and the
gray levels of such pixels can be recovered. By contrast,
large speckle noises are hard to remove and can only be
averaged with its neighbors. Therefore, the filtered im-
age that corresponds to small noise ESPI fringe patterns
will be more similar to the ideal fringe pattern, i.e., it
has higher fidelity. For the same image (i.e., the speckle
size is fixed), the iteration number becomes large when
a large window is adopted to calculate S to determine
the iteration number n, whereas the fidelity becomes low
based on the adaptive selective parameters as neighbor
size increases when calculating S. Hence, a large itera-
tion number is not always good for denoising, and the
3×3 window for calculating S is sufficiently useful to
obtain a suitable iteration number.

Thirdly, experimentally obtained ESPI fringe pat-
terns (Fig. 5(a)) are tested. Figure 5(b) shows the
filtered results by using the proposed method. Noises are
effectively suppressed by the adaptive SOOPDE model,
and the fringe edges are well preserved, even for the
high-intensity noise and experimentally obtained ESPI
fringe pattern.

Finally, we test the performance of the adaptive pa-
rameter selection method on the phase map[13] of ESPI.
The wrapped-phase map obtained directly by utilizing
the phase-shift procedure is noisy. Filtering for the phase
map is necessary and effective during phase extraction.
We first calculate the sine and cosine of the wrapped-
phase fringe pattern[14], which leads to continuous fringe
patterns. The sine and cosine fringe patterns are then
filtered individually by using the SOOPDE with the
adaptive selective parameters. When the SOOPDE is
used for filtering, the adaptive selective parameters for
the sine fringe patterns are ∆t = 0.3 and n = 16 and
those for the cosine fringe patterns are ∆t = 0.3 and
n = 22. The phase fringe pattern is finally obtained
by the inverse tangent of the filtered sine and cosine

fringe patterns. The result is shown in Fig. 6. The filter
result can maintain the information of the phase jump
while removing the inconsistent dots in the phase pattern
effectively.

In conclusion, we conduct an extensive study on
filtering methods based on the orientated information
for ESPI fringe patterns. We first analyze two com-
monly used filtering methods, i.e., the SOOPDE filtering
method and the ORQCF method, and proved that these
two approaches are equivalent. We then propose an

Fig. 4. Two ESPI images with different speckle size and their
filtered results: (a-1) and (b-1) are the initial images with
speckle noises of one and three pixels, respectively; (a-2) and
(a-3) are the filtered images for (a-1) based on the proposed
method (which adopt 3×3 and 7×7 windows to calculate S
to obtain the iteration number n, respectively); (b-2) and (b-
3) are the filtered images for (b-1) based on the proposed
method (which adopt 3×3 and 7×7 windows to calculate S
to obtain the iteration number n, respectively).

Fig. 5. Experimentally obtained ESPI fringe pattern and its
filtered image: (a) initial image, (b) filtered image using the
SOOPDE with the adaptive selective parameters ∆t = 0.2
and n = 137.
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Fig. 6. Phase map of ESPI and its filtered image: (a) ini-
tial image, (b) filtered image by using the SOOPDE with the
adaptive selective parameters.

adaptive method for selecting parameters to solve the
SOOPDE. The performance of the proposed method is
tested by two ESPI fringe patterns, i.e., the computer-
simulated and experimentally obtained images and the
one-phase map of ESPI. The qualitative and quantita-
tive analyses on the filtered results demonstrate that
the parameters selected by the adaptive method for the
SOOPDE model are effective and suitable for ESPI fringe
patterns.
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